A Comparison among Deterministic Packet-dropouts Models in Networked Control Systems

Claudio De Persis and Pietro Tesi

Abstract—Several papers have studied networked control systems in the presence of packet dropouts. One can distinguish between deterministic and stochastic packet-dropout models, the former being particularly suited when packet dropouts are of a malicious nature. This note aims at linking and comparing a number of deterministic packet-dropout models.

I. INTRODUCTION

Several papers have studied networked control systems in the presence of packet dropouts. One can distinguish between deterministic and stochastic packet dropouts models. While the latter has been thoroughly investigated in the realm of networked control systems, the former is gaining attention especially in connection with security issues. In fact, it is recognized that communication failures induced by malicious attacks can have a temporal profile quite different from the one exhibited by genuine packet losses, as assumed in the majority of studies on networked control. In particular, communication failures induced by malicious attacks need not follow a given class of probability distributions [1].

The aim of this note is to link and compare a number of deterministic packet-dropout models. We will also discuss implications of the results and connect the results with the framework of asynchronous dynamical systems [2].

Notation. We denote by \mathbb{R} the set of reals. Given $\alpha \in \mathbb{R}$, we let $\mathbb{R}_{>0}$ denote the set of reals greater than (greater than or equal to) α. We let $\mathbb{N} := \{0, 1, 2, \ldots \}$ denote the set of natural numbers. Given $\alpha \in \mathbb{N}, \mathbb{N}_{>0}$ denotes the set of integers greater than (greater than or equal to) α. Given an interval I, $|I|$ denotes its length, and given a set $S = \bigcup_k I_k$ consisting of a countable union of intervals I_k, $|S|$ denotes its Lebesgue measure.

II. DETERMINISTIC PACKET-DROPOUTS MODELS

We consider a networked system in which two units exchange data through a digital communication medium. This scenario can be representative of a centralized setting in which a process and a controller communicate via digital sensing and/or control channels, or a distributed setting where network units cooperate to achieve a common task, as occurs, for instance, in sensor fusion. We will assume that transmissions occur at a fixed rate. Let $\{t_k\}_{k \in \mathbb{N}}, t_0 := 0$, be the sequence of transmission attempts. Then,

$$t_{k+1} - t_k = \Delta \quad (1)$$

for every $k \in \mathbb{N}$, where $\Delta \in \mathbb{R}_{>0}$. Given Δ, the sequence of unsuccessful transmissions is also referred to as pattern of packet dropouts.

A classic deterministic model defines worst-case bounds on the maximum number of consecutive dropouts [3]–[7].

Model 1: The number of consecutive packet dropouts does not exceed N for some constant $N \in \mathbb{N}$.

Next, we consider a model which is related to the framework of asynchronous dynamical system [2]. We will discuss such connections later in Section V.

Model 2: For every $k \in \mathbb{N}$, let $\theta_k = 0$ when there is a packet dropout at time t_k and $\theta_k = 1$ otherwise. There exist constants $c \in \mathbb{R}_{>0}$ and $\lambda \in \mathbb{R}_{>1}$ such that

$$\sum_{k=k_0}^{k_1} (1 - \theta_k) \leq c + \frac{k_1 - k_0}{\lambda} \quad (2)$$

for every $k_0, k_1 \in \mathbb{N}$ with $k_1 \geq k_0$.

Recently in [8], a different modelling framework has been considered, still of a deterministic type. Instead of looking at the behavior of dropouts, this approach aims at modelling the "source" of dropouts, for example a jamming signal that destroys the network availability [9], [10]. In the sequel, we will use the general term Denial-of-Service (DoS) signal to indicate the source of dropouts.

Let $\{h_n\}_{n \in \mathbb{N}}$ with $h_0 \in \mathbb{R}_{>0}$ denote the sequence of DoS off/on transitions, that is at times at which the DoS signal changes from zero (transmissions are allowed) to one (transmissions are denied). Thus $H_n := \{h_n\} \cup [h_n, h_n + \tau_n]$ represents the n-th DoS time-interval of a length $\tau_n \in \mathbb{R}_{>0}$, where $h_n + \tau_n$ is the n-th off/on transition of the DoS signal. Given $\tau, t \in \mathbb{R}_{>0}$ with $t \geq \tau$, let $n(\tau, t)$ be the number of DoS off/on transitions over $[\tau, t]$, and let

$$\Xi(\tau, t) := \bigcup_{n \in \mathbb{N}} H_n \cap [\tau, t] \quad (3)$$

be the subset of $[\tau, t]$ where transmissions are denied.

The following model of DoS signals is introduced.

Model 3: There exist constants $\eta \in \mathbb{R}_{>0}, \kappa \in \mathbb{R}_{>0}, \tau_f \in \mathbb{R}_{>0}$ and $\tau_d \in \mathbb{R}_{>1}$ such that

$$n(\tau, t) \leq \eta + \frac{t - \tau}{\tau_f} \quad (4)$$

and

$$|\Xi(\tau, t)| \leq \kappa + \frac{t - \tau}{\tau_d} \quad (5)$$

for all $\tau, t \in \mathbb{R}_{>0}$ with $t \geq \tau$.

C. De Persis and P. Tesi are with ENTEG, University of Groningen, 9747 AG Groningen, The Netherlands. E-mail: \{c.de.persis, p.tesi\}@rug.nl. P. Tesi is also with DINFO, Università di Firenze, 50139 Firenze, Italy E-mail: pietro.tesi@unifi.it.
Thus, given a DoS signal S and a sampling time Δ, the pattern of dropouts resulting from S and Δ is the sequence of transmission attempts that belong to some interval of S.

Both Models 2 and 3 constrain the number of dropouts in an “average” sense. Following [11], the parameter λ in Model 2 can be defined as the average dwell-time between consecutive packet dropouts, while c is the chattering bound. Condition $\lambda \in R_{>1}$ guarantees that successful transmissions exist. Similarly, Model 3 constrains a DoS signal in terms of its average frequency and duration. The parameter τ_f represents the average dwell-time between consecutive DoS off/on transitions, while η is the chattering bound. Condition (5) expresses a similar requirement with respect to the duration of a DoS signal. Conditions $\tau_f \in R_{>0}$ and $\tau_d \in R_{>1}$ imply that a DoS signal cannot occur at an infinitely fast rate or be always active.

III. A COMPARISON AMONG DETERMINISTIC PACKET-DROPOUTS MODELS

A. A comparison between Models 1 and 2

Theorem 1: Consider a transmission policy as in (1). A packet-dropout pattern satisfying Model 2 satisfies Model 1 with $N = W$, where

$$W := \left[(c - \frac{1}{\lambda}) \frac{\lambda}{\lambda - 1} \right]$$

Proof. The worst-case number $w(k_0, k_1)$ of dropouts that can occur on $[t_{k_0}, t_{k_1}]$ is $k_1 - k_0 + 1$. By Model 2, we then have $k_1 - k_0 + 1 \leq c + (k_1 - k_0)/\lambda$, which implies

$$w(k_0, k_1) = k_1 - k_0 + 1 \leq \left[(c - \frac{1}{\lambda}) \frac{\lambda}{\lambda - 1} \right]$$

where the inequality follows because $w(k_0, k_1)$ is an integer. This yields the result since t_{k_0} and t_{k_1} are arbitrary.

Remark 1: Notice that $W \geq 1$ if and only if $c \geq 1$. In fact, it is easy to see that in Model 2 there are no packet dropouts if $c < 1$.

Theorem 2: Consider a transmission policy as in (1). A packet-dropout pattern satisfying Model 1 satisfies Model 2 with

$$(c, \lambda) = \left(\frac{2N}{N+1}, \frac{N+1}{N} \right)$$

Proof. By Model 1, at most N transmissions can fail every $N + 1$ consecutive transmission attempts. Thus, every $k \in N$ transmission attempts there are not more than $k - \left[\frac{k}{N+1} \right]$ packet dropouts. Since

$$\left[\frac{k}{N+1} \right] \leq \frac{k}{N+1} - \frac{N}{N+1}$$

then

$$\sum_{k=k_0}^{k_1} (1 - \theta_k) \leq k_1 - k_0 + 1 - \left(\frac{k_1 - k_0 + 1}{N + 1} - \frac{N}{N + 1} \right)$$

$$= (k_1 - k_0) \frac{N}{N+1} + \frac{2N}{N+1}$$

which is the thesis.

Remark 2: A model very similar to Model 1 is considered in [12]. There, one assumes that on every interval containing P communication attempts at most $R < P$ attempts can fail. Clearly this model satisfies Model 1 with $N = R$. Conversely, a packet-dropout pattern satisfying Model 1 does also satisfy this model with $R = N$ and $P = N + 1$.

B. A comparison between Models 2 and 3

In order to link Models 2 and 3, we will avail ourselves of a technical lemma, which establishes a suitable notion of equivalence between DoS signals.

Definition 1: Given a sampling time Δ, two DoS signals are said to be “packet-dropout equivalent” (PE) if they generate exactly the same pattern of packet dropouts.

Lemma 1: Consider a transmission policy as in (1), along with a DoS signal S satisfying Model 3 with parameters $(\kappa, \tau_d, \eta, \tau_f)$. Then, there exists a DoS signal \tilde{S} satisfying Model 3 and such that S and \tilde{S} are PE. In particular, \tilde{S} has parameters

$$(\tilde{\tau}, \tau_d, \tilde{\eta}, \tilde{\tau}_f) = \left(0, \infty, \frac{\kappa}{\Delta} + \eta + T, \frac{\Delta}{T} \right)$$

where

$$T := \frac{1}{\tau_d} + \frac{\Delta}{\tau_f}$$

Proof. See the Appendix.

Building on \tilde{S}, one can actually construct infinitely many PE signals by adding to \tilde{S} DoS intervals which do not interfere at all with the transmissions. The form of \tilde{S} is particularly useful since \tilde{S} takes the form of a train of pulses due to $(\tilde{\tau}, \tau_d) = (0, \infty)$. In this way, one eliminates the portions of DoS that do not interfere with the transmissions and one can bound the frequency of dropouts directly in terms of the DoS frequency.

Using Lemma 1, we prove a first implication.

Theorem 3: Consider a transmission policy as in (1), along with a DoS signal S satisfying Model 3 with $T < 1$. Then, the resulting packet-dropouts pattern satisfies Model 2 with

$$(c, \lambda) = \left(\frac{\kappa}{\Delta} + \eta + T, \frac{1}{T} \right)$$

Proof. Consider a DoS signal S satisfying Model 3 with parameters $(\kappa, \tau_d, \eta, \tau_f)$. In view of Lemma 1, a PE signal \tilde{S} has parameters as in (11). Let $\pi(\tau, t)$ denote the number of afflon transitions of \tilde{S} over $[\tau, t]$. Hence,

$$\sum_{k=k_0}^{k_1} (1 - \theta_k) = \pi(t_{k_0}, t_{k_1})$$

$$\leq \frac{\kappa}{\Delta} + \eta + T + \frac{T}{\Delta} (t_{k_1} - t_{k_0})$$

The thesis follows since $t_{k_1} - t_{k_0} = (k_1 - k_0)\Delta$. We now focus on the converse implication.
Theorem 4: Consider a transmission policy as in (1), along with a packet-dropout pattern \(\mathcal{P} \) satisfying Model 2. Then, there exist infinitely many PE DoS signals satisfying Model 3 with \(T < 1 \), which generate the pattern \(\mathcal{P} \). One of them has parameters

\[
(\kappa, \tau_d, \eta, \tau_f) = (0, \infty, c, \lambda \Delta) \quad (15)
\]

Proof. Consider a packet-dropout pattern \(\mathcal{P} \), and let \(\{t_n\}_{n \in \mathbb{N}} \) denote the corresponding sequence of unsuccessful transmissions. One can model \(\mathcal{P} \) as the result of a DoS signal with \((h_n, \tau_n) := (t_n, 0) \). Thus (5) holds with \(\kappa = 0 \) and \(\tau_d = \infty \). As for \(n(\tau, t) \) notice that, by construction, \(n(\tau, t) \) equals the number of dropouts occurring on \([\tau, t] \). In particular, \(n(\tau, t) = 0 \) whenever \(\tau \leq t \) does not contain any dropout, while \(n(\tau, t) = n(t_0, t_0) \) where \(t_0 := \min \{k : t_k \geq \tau\} \) and \(k_1 := \max \{k : t_k \leq t\} \) otherwise. Hence,

\[
n(\tau, t) = \sum_{k=k_0}^{k_1} (1 - \theta_k) \quad (16)
\]

In view Model 2 we have

\[
n(\tau, t) \leq c + \frac{k_1 - k_0}{\lambda} \quad (17)
\]

Since \(k_1 - k_0 = (t_{k_1} - t_{k_0})/\Delta \leq (t - \tau)/\Delta \) then (4) holds true with \(\eta = c \) and \(\tau_f = \lambda \Delta \). Building on \(\mathcal{S} \), infinitely many PE signals can be constructed by adding to \(\mathcal{S} \) DoS intervals which do not interfere with the transmission instants.

Remark 3: As discussed in Remark 1, there are no packet dropouts when \(c < 1 \). In this case, we have \(\eta < 1 \). It is immediate to see that this condition indeed implies no packet dropouts in Model 3 since the existence of a packet dropout requires the existence of a DoS off/on transition at a certain time \(t \) which implies \(n(t, t) = 1 \leq \eta \).

Theorems 3 and 4 rely on condition \(T < 1 \). In this respect, note that in Model 2 condition \(\lambda > 1 \) is needed to ensure that successful transmissions exist. As next lemma shows, condition \(T < 1 \) plays exactly the same role with respect to Model 3.

Lemma 2: Consider a transmission policy as in (1), and let \(\mathcal{D}(\tau_f, \tau_d) \) denote the class of all the DoS signals satisfying Model 3 with \(T \geq 1 \). Then, \(\mathcal{D}(\tau_f, \tau_d) \) contains infinitely many signals that destroy every transmission.

Proof. Let \(\tau_d = p/q \) where \(p, q \in \mathbb{N} \) with \(p > q \), and let \(\tau_f = (p\Delta)/(p - q) \). Clearly \(T = 1 \). Decompose \(\mathbb{R}_{\geq 0} \) as

\[
\mathbb{R}_{\geq 0} = \bigcup_{k \in \mathbb{N}} [kp\Delta, (k + 1)p\Delta[\quad (18)
\]

and consider a DoS signal which for each \(k \in \mathbb{N} \) behaves as follows: (i) it remains active over \([kp\Delta, kp\Delta + q\Delta[\); and (ii) it remains idle till \((k + 1)p\Delta \) except for \(p - q - 1 \) pulses at times \(kp\Delta + (q + 1)\Delta, kp\Delta + (q + 2)\Delta, \ldots, kp\Delta + (p - 1)\Delta \). By construction, this signal disrupts every transmission. Such signals are infinitely many as \(p \) and \(q \) are arbitrary. It is an easy matter to see that the considered DoS signal does indeed satisfy Model 3 with the given \((\tau_f, \tau_d) \) and with \(\eta = p - q / \Delta = q \Delta \).

As shown next, condition \(T < 1 \) also suffices to ensure that the maximum number of consecutive packet dropouts is uniformly bounded.

C. A comparison between Models 1 and 3

Theorem 5: Consider a transmission policy as in (1), along with a DoS signal satisfying Model 3. If \(T < 1 \) then the resulting packet-dropouts pattern satisfies Model 1 with \(N = S \), where

\[
S := \left(\frac{\kappa}{\Delta} + \eta \right) \frac{1}{1 - T} \quad (19)
\]

Proof. By Theorem 3, the resulting packet-dropout pattern satisfies Model 2 with \(c = \kappa/\Delta + \eta + T \) and \(\lambda = 1/T \). Hence, the thesis follows from Theorem 1.

Theorem 6: Consider a transmission policy as in (1), along with a packet-dropouts pattern \(\mathcal{P} \) satisfying Model 1. Then, there exist infinitely many PE DoS signals satisfying Model 3 with \(T < 1 \), which generate the pattern \(\mathcal{P} \). One of them has parameters

\[
(\kappa, \tau_d, \eta, \tau_f) = (0, \infty, c/\Delta, \lambda \Delta) \quad (20)
\]

Proof. By Theorem 2, the packet-dropout pattern satisfies Model 2 with \(c = 2N/(N + 1) \) and \(\lambda = (N + 1)/N \). Hence, the thesis follows from Theorem 4.

IV. APPLICATIONS TO NETWORKED CONTROL

One of the main implications of the foregoing analysis is the possibility to reformulate stability properties for a given packet-dropout model in terms of the other models.

A. Stability of networked control systems

Consider a dynamical system of the form

\[
\dot{x} = f(x, u), \quad y = h(x, u) \quad (21)
\]

where \(x \in \mathbb{R}^n \) is the state with initial condition \(x(t_0) = x_0 \); \(u \in \mathbb{R}^m \) is the process input, and \(y \in \mathbb{R}^p \) is the process output. The process-controller communication is networked which means that the control system can only receive process data and send control updates at discrete-times \(t_k \) with \(t_{k+1} = t_k + \Delta \) for every \(k \in \mathbb{N} \) where \(\Delta \in \mathbb{R}_{>0} \). The control action is implemented in a classic sample-and-hold fashion. Let \(\{z_m\}_{m \in \mathbb{N}} \) denote the sequence of successful transmissions. The controller has dynamics

\[
\dot{\xi} = g(\xi, y), \quad u = l(\xi, y) \quad (22)
\]

where, given a signal \(s \),

\[
\pi(t) = \begin{cases}
0, & t < z_0 \\
\frac{1}{s(z_m)}, & t \in [z_m, z_{m+1})
\end{cases} \quad (23)
\]

Here, \(\xi \in \mathbb{R}^q \) is the state with initial condition \(\xi(t_0) = \xi_0 \); \(y \in \mathbb{R}^p \) is the controller input, and \(u \in \mathbb{R}^m \) is the controller output. In words, in the nominal situation in which there are no dropouts, the control signal \(u \) is given by \(l(\xi(z_m), y(z_m)) \) for all \(t \in [z_m, z_{m+1}) \). When a transmission failure occurs the actuator keeps the last received control value.
Hereafter, stability is meant in a Lyapunov sense.

Theorem 7: Consider a control system as in (21) and (22). Assume that \((x_0, \zeta_0, \Delta)\) are such that an equilibrium of the control system is (asymptotically) stable for every packet-dropout pattern that satisfies Model 1 with \(N \leq N_\ast \in \mathbb{N}\). Then, the equilibrium remains (asymptotically) stable for every packet-dropout pattern that satisfies Model 2 with \((c, \lambda)\) such that \(W \leq N_\ast\) where \(W\) is as in (6), and every DoS signal satisfying Model 3 with \((\kappa, \tau_d, \eta, \tau_f)\) such that \(T < 1\) and \(S \leq N_\ast\), where \(S\) is as in (19).

Proof. Consider Model 2 and suppose that the claim is not true. Then, there exists a packet-dropout pattern that causes instability with \((c, \lambda)\) such that \(W \leq N_\ast\). However, in view of Theorem 1 this pattern can generate at most \(N = W\) consecutive dropouts, which leads to a contradiction since the system is (asymptotically) stable for every \(N \leq N_\ast\). As for Model 3, the result can be shown in an analogous way using Theorem 5.

Theorem 8: Consider a control system as in (21) and (22). Assume that \((x_0, \zeta_0, \Delta)\) are such that an equilibrium of the control system is (asymptotically) stable for every packet-dropout pattern that satisfies Model 2 with \(\lambda \geq \lambda_\ast \in \mathbb{R}_+\) and \(c \leq c_\ast \in \mathbb{R}_{\geq 0}\). Then, the equilibrium of the control system remains (asymptotically) stable for every packet-dropout pattern that satisfies Model 1 with \(N\) such that

\[
\begin{align*}
2N & \leq N + \frac{1}{\lambda_\ast} - 1
\end{align*}
\]

and every DoS signal satisfying Model 3 with \((\kappa, \tau_d, \eta, \tau_f)\) such that \(k/\Delta + \eta + T \leq c_\ast\) and \(T \leq 1/\lambda_\ast\).

Proof. Consider Model 1 and suppose that the claim is not true. Then, there exists a packet-dropout pattern that causes instability with \((c, \lambda)\) such that \(W \leq N_\ast\). However, in view of Theorem 1 this pattern can generate at most \(N = W\) consecutive dropouts, which leads to a contradiction since the system is (asymptotically) stable for every \(N \leq N_\ast\). As for Model 3, the result can be shown in an analogous way using Theorem 5.

Theorem 9: Consider a control system as in (21) and (22). Assume that \((x_0, \zeta_0, \Delta)\) are such that an equilibrium of the control system is (asymptotically) stable for every packet-dropout pattern that satisfies Model 2 with \(\lambda \geq \lambda_\ast \in \mathbb{R}_+\) and \(c \leq c_\ast \in \mathbb{R}_{\geq 0}\). Then, the equilibrium of the control system remains (asymptotically) stable for every packet-dropout pattern satisfying Model 1 with

\[
\begin{align*}
2N \leq 1 & \leq \eta_\ast \\
N \leq \frac{T_\ast}{1 - T_\ast}
\end{align*}
\]

and every packet-dropout pattern satisfying Model 2 with \((c, \lambda)\) such that \(c \leq \eta_\ast\) and \(\lambda \geq 1/T_\ast\).

Proof. Consider Model 1, and suppose that the claim is not true. Then, there exists a pattern \(\mathcal{P}\) which induces instability with \(N\) satisfying (25). By Theorem 6, \(\mathcal{P}\) can be thought of as generated by a DoS signal with parameters \(\kappa = 0\), \(\tau_d = \infty\), \(\eta = 2N/(N + 1)\) and \(\tau_f = \Delta(N + 1)/N\). Since condition \(\kappa \leq \kappa_\ast\) trivially holds, we must have either \(\eta = 2N/(N + 1) > \eta_\ast\) or \(T = N/(N + 1) > T_\ast\). This leads to a contradiction. As for Model 2, the result can be shown in an analogous way using Theorem 4.

Remark 4: In Theorem 9, the constraints for Models 1 and 2 do not depend on \(\kappa_\ast\). This comes from modeling a DoS signal via a PE signal consisting in a train of pulses, as done in Theorems 4 and 6.

It is interesting to observe that the first constraint in (24) and (25) becomes inactive when \(c_\ast \geq 2\) and \(\eta_\ast \geq 2\). This situation happens whenever stability is not compromised by long but sporadic sequences of dropouts. In this case, proving (asymptotic) stability for Models 2 and/or 3 clearly yields results that are less conservative than Model 1, which never allows a sequence of packet dropouts to exceed a prescribed bound \(N\).

We exemplify this point for the case of linear dynamics.

Theorem 10: Consider a dynamical system of the form \(\dot{x} = Ax + Bu\) along with the control action \(u = K\pi\), where \(\pi\) is defined as in (23) and \(K\) is a suitable state-feedback matrix such that all the eigenvalues of \(\Phi = A + BK\) have negative real part. Given any positive symmetric definite matrix \(Q\), let \(P\) be the solution of the Lyapunov equation \(\Phi^\top P + P\Phi + Q = 0\). Let \(\alpha_1\) and \(\alpha_2\) be equal to the smallest and largest eigenvalue of \(P\), respectively, \(\gamma_1\) equal to the smallest eigenvalue of \(Q\), \(\gamma_2 := \|2PBK\|\) and \(\gamma_3 := \|2P\|\).

Let \(\sigma \in \mathbb{R}_{> 0}\) be such that \(\gamma_1 - \sigma \gamma_2 > 0\). Let the sampling rate \(\Delta \leq \Delta_\ast\) where

\[\Delta_\ast := \frac{\sigma}{1 + \sigma} \max\{\|\Phi\|, 1\}\]

when \(\mu_A \leq 0\) and

\[\Delta_\ast := \frac{1}{\mu_A} \log \left(\frac{\sigma}{1 + \sigma} \max\{\|\Phi\|, 1\} \mu_A + 1\right)\]

when \(\mu_A > 0\), where \(\mu_A\) is the logarithmic norm of \(A\). Let \(\omega_1 := (\gamma_1 - \gamma_2 \sigma)/2\alpha_2\) and \(\omega_2 := 2\gamma_2/\alpha_1\). Then, the closed-loop system is asymptotically stable (depending on the modelling tool of choice):

(a) For every packet-dropout pattern satisfying Model 1 with \(N \leq N_\ast\), where \(N_\ast\) is any positive integer such that \(N_\ast < |\omega_1/\omega_2|\).

(b) For every packet-dropout pattern satisfying Model 2 with arbitrary \(c_\ast\) and \(\lambda \geq \lambda_\ast\), where \(\lambda_\ast\) is any positive real such that \(\lambda_\ast > (\omega_1 + \omega_2)/\omega_1\).

(c) For every DoS signal satisfying Model 3 with arbitrary \((\kappa, \eta)\), and \((\tau_d, \tau_f)\) such that \(T \leq T_\ast\), where \(T\) is as in (12) and \(T_\ast\) is any positive real number such that \(T_\ast < \omega_1/(\omega_1 + \omega_2)\).
Proof. The proof of (c) can be found in [8]. Then also (a) and (b) hold true in view of Theorem 9.

As discussed in [8], \(\omega_1 \) (respectively \(\omega_2 \)) represents the converging (diverging) rate of the closed-loop system in the absence (presence) of packet dropouts. One sees that in this case Models 2 and 3 provide less conservative results. For instance, when \(\omega_1 = \omega_2 = \omega \) conditions (b) and (c) amounts to requiring that, on the average, the number of successful transmissions is larger than half of the transmission attempts. Instead, condition (a) indicates that the maximum number of transmissions is larger than half of the transmission attempts. The result is correct because a sequence \(\{z_m\}_{m \in \mathbb{N}} \) of successful transmissions given by \(z_m = 2\Delta m \) (successful transmissions and dropouts following one another) destroys asymptotic stability. However, condition (a) fails to capture that long but sporadic sequences of dropouts need not destroy stability. Stability results with respect to Models 2 and 3 have been considered also in nonlinear [13] and distributed [14], [15] settings.

B. Intrusion detection and stealthiness

As discussed in [16], packet reception rate (PRR) provides an effective means for intrusion detection systems. PRR is considered also in nonlinear [13] and distributed [14], [15] settings.

V. ASYNCHRONOUS DYNAMICAL SYSTEMS

In [2], a framework is introduced to model dynamical systems driven by events that occur asynchronously. This framework has been exploited to model networked systems subject to dropouts defined in terms of rate of data loss [17], [18]. Hereafter, we consider a version of asynchronous dynamical systems that fits the purpose of our discussion.

Consider a dynamical system governed by

\[
\dot{x} = f_s(x)
\]

where \(x \in \mathbb{R}^n, s \in \mathcal{I} := \{1, 2\} \), and \(\mathcal{I} \) represents the set of discrete states with corresponding set of rates \(\{1 - r, r\} \), where \(r \in [0, 1] \). The function \(f_1 \) describes the system dynamics in nominal conditions while \(f_2 \) describes the system dynamics when dropouts occur. Let us introduce one more dropout model.

Model 4: For any \(k \in \mathbb{N} \), let \(\theta_k = 0 \) when there is a packet dropout at time \(t_k \) and \(\theta_k = 1 \) otherwise. For any \(k_0 \in \mathbb{N} \), the packet dropout rate \(r \) is defined as

\[
r := \limsup_{m \to +\infty} \frac{1}{m} \sum_{k=k_0}^{k_0+m-1} (1 - \theta_k)
\]

In contrast with the definition of rate of events in [2], the definition of packet dropout rate above uses the limit superior rather than the limit. The quantity \(r \) is also termed data missing rate in [19] and jamming rate [20] in communication networks.

Assume there exist a class \(C^1 \) function \(V : \mathbb{R}^n \to \mathbb{R}_{\geq 0} \) such that \(v_1(\|x\|) \leq V(x) \leq v_2(\|x\|) \) for some class \(K_{\infty} \) functions \(v_1, v_2 \). In [2], the authors show that the system is asymptotically stable if there exist two constants \(c_1 \) and \(c_2 \) such that

\[
(1 - r)c_1 + rc_2 > 0
\]

and

\[
\frac{\partial V}{\partial x} f_i(x) \leq -c_i V(x)
\]

for \(i = 1, 2 \). Assuming \(c_1 > 0 \) (stable behavior in nominal conditions) and \(c_2 < 0 \) (unstable behavior in the presence of packet dropouts), (31) can be rearranged as

\[
r < \frac{c_1}{c_1 - c_2}
\]

which has exactly the same form as the constraint on \(\lambda \) and \(T \) in Theorem 10 upon letting \(\omega_1 := c_1 \) and \(\omega_2 := -c_2 \). This model is indeed connected with Models 2 and 3.

Theorem 11: Consider a packet-dropout pattern that satisfies Model 2 and the limit superior \(\rho \) of the series on the right hand side of (2) normalized by the number of elements of the series is convergent, namely

\[
\limsup_{k_1 - k_0 \to +\infty} \frac{1}{k_1 - k_0 + 1} \sum_{k=k_0}^{k_1} (1 - \theta_k) =: \rho
\]

Then the packet dropout pattern also satisfies Model 4 with packet dropout rate \(r \) satisfying

\[
r = \rho \leq \frac{1}{\lambda}
\]

Proof. By (2), any packet-dropout pattern generated according to Model 2 must satisfy

\[
\frac{1}{k_1 - k_0 + 1} \sum_{k=k_0}^{k_1} (1 - \theta_k) \leq \frac{c}{k_1 - k_0} + \frac{k_1 - k_0}{\lambda(k_1 - k_0 + 1)}
\]

The sequence on the left side satisfies

\[
sup_{k_1 \geq k_0 \geq 0} \frac{1}{k_1 - k_0 + 1} \sum_{k=k_0}^{k_1} (1 - \theta_k) \leq \frac{c}{k_1 - k_0} + \frac{1}{\lambda k_1 - k_0 + 1},
\]

for all \(k_1 - k_0 \geq 0 \). By the comparison theorem for series, taking the limit as \(k_1 - k_0 \to +\infty \), we obtain the thesis.
Theorem 11 shows that Models 2 and 3 can be used to asymptotically bound a given rate of data loss. These models still present an advantage with respect to Model 4 since they have parameters (c in Model 2 and (κ, η) in Model 3) which can be tuned to ensure bounds also on the transient. This is not possible for Model 4 which only specifies asymptotic properties.

VI. ConcludingRemarks

In this note, we have compared a number of deterministic packet-dropout models, and discussed their relative merits within the context of networked control. The analysis, here, rests on the hypothesis that transmissions are carried out at a constant frequency. Extending the present analysis to aperiodic settings is certainly interesting for gaining a better understanding of event-based and self-triggered control [21] in the presence of packet dropouts.

APPENDIX

Proof of Lemma 1. Let \(\{\ell_n\}_{n\in\mathbb{N}} \) be the sequence of dropouts induced by \(S \). We construct a DoS signal \(\bar{S} \) with the property that each instance of \(\bar{S} \) starts at \(\bar{h}_n = \ell_n \) and has duration \(\tau_n = 0 \), giving \(\bar{S}_\tau := \{\bar{h}_n\} \cup \{\bar{h}_n, \bar{h}_n + \tau_n\} = \{\bar{h}_n\} \). By construction, \(\bar{S} \) takes the form of a train of pulses superimposed to the dropouts induced by \(S \). Proceeding as in Section 2, let \(\bar{\pi}(\ell, t) \) denote the number of off/on transitions of \(\bar{S} \) over \([\tau, t] \), and let \(\bar{\Xi}(\tau, t) := \bigcup_{\bar{h}\in\mathbb{N}} \bar{S}_{\bar{h}} \cap [\tau, t] \). The signal \(\bar{S} \) satisfies (5) with respect to \(\bar{\pi} = 0 \) and \(\pi_d = \infty \). As for condition (4), \(\bar{\pi}(\tau, t) = 0 \) whenever \([\tau, t] \) does not contain any dropout, while \(\bar{\pi}(\tau, t) = \bar{\pi}(\ell, \ell_s) \) where \(r := \min\{n : \ell_n \geq \tau\} \) and \(s := \max\{n : \ell_n \leq t\} \) otherwise. In the former case, the thesis holds trivially. We then focus on the latter case. We claim that

\[
\bar{\pi}(\ell, \ell_s) \Delta \leq |\bar{\Xi}(\ell, \ell_s)| + n(\ell, \ell_s) \Delta
\]

(37)

where \(n(\ell, \ell_s) := \max\{0, \ell_s - \Delta\} \). To begin with, we prove the claim for \(s = r \). If \(\ell_s = \ell_r = 0 \) then \(n(\ell, \ell_s) = 0 \), and the claim follows from the fact that \(n(0,0) \) must be equal to 1 since \(S \) and \(\bar{S} \) are PE by construction. If instead \(\ell_s - \Delta \) then \(\ell_r = \ell_s - \Delta \). In this case, either \(|\bar{\Xi}(\ell_s - \Delta, \ell_r)| = \Delta \) or \(n(\ell, \ell_r, \ell_s) \geq 1 \). The former case means that there is a DoS interval blocking the transmission at \(\ell_r - \Delta \) which persists up to \(\ell_s \), while the latter case means that a new DoS interval arises before \(\ell_r \). In either case we get

\[
|\bar{\Xi}(\ell_r - \Delta, \ell_r)| + n(\ell, \ell_r) \Delta = \Delta
\]

(38)

This shows the claim for \(s = r \).

Assume now that the claim holds true for a certain \(s \geq r \). By construction, it holds that \(\bar{\pi}(\ell, \ell_{s+1}) = \bar{\pi}(\ell, \ell_s) + 1 \). On the other hand, reasoning as before, either \(|\bar{\Xi}(\ell_r, \ell_{s+1})| = |\bar{\Xi}(\ell_r, \ell_{s+1} - \Delta)| + \Delta \) or \(n(\ell_r, \ell_{s+1}) = n(\ell_r, \ell_{s+1} - \Delta) + 1 \). In either case we get

\[
\bar{\pi}(\ell, \ell_{s+1}) \Delta = \bar{\pi}(\ell, \ell_s) \Delta + \Delta
\]

\[
\leq |\bar{\Xi}(\ell_r, \ell_s)| + n(\ell, \ell_s) \Delta + \Delta
\]

\[
\leq |\bar{\Xi}(\ell_r, \ell_{s+1})| + n(\ell_r, \ell_{s+1}) \Delta \]

(39)

This shows (37).

The thesis follows applying Model 3 to the right-hand side of (37), which gives

\[
\bar{\pi}(\ell_r, \ell_s) \Delta \leq n(\ell_s - \ell_r) \leq t - \tau + \Delta.
\]

References